About This Course
Course Curriculum
-
Welcome to the Python for Data Science & ML bootcamp!00:01:00
-
Introduction to Python00:01:00
-
Setting Up Python00:02:00
-
What is Jupyter?00:01:00
-
Anaconda Installation Windows Mac and Ubuntu00:04:00
-
How to implement Python in Jupyter00:01:00
-
Managing Directories in Jupyter Notebook00:03:00
-
Input & Output00:02:00
-
Working with different datatypes00:01:00
-
Variables00:02:00
-
Arithmetic Operators00:02:00
-
Comparison Operators00:01:00
-
Logical Operators00:03:00
-
Conditional statements00:02:00
-
Loops00:04:00
-
Sequences Part 1: Lists00:03:00
-
Sequences Part 2: Dictionaries00:03:00
-
Sequences Part 3: Tuples00:01:00
-
Functions Part 1: Built-in Functions00:01:00
-
Functions Part 2: User-defined Functions00:03:00
-
Course Materials
-
Installing Libraries00:01:00
-
Importing Libraries00:01:00
-
Pandas Library for Data Science00:01:00
-
NumPy Library for Data Science00:01:00
-
Pandas vs NumPy00:01:00
-
Matplotlib Library for Data Science00:01:00
-
Seaborn Library for Data Science00:01:00
-
Introduction to NumPy arrays00:01:00
-
Creating NumPy arrays00:06:00
-
Indexing NumPy arrays00:07:00
-
Array shape00:01:00
-
Iterating Over NumPy Arrays00:05:00
-
Basic NumPy arrays: zeros()
-
Basic NumPy arrays: ones()00:01:00
-
Basic NumPy arrays: full()00:01:00
-
Adding a scalar00:02:00
-
Subtracting a scalar00:01:00
-
Multiplying by a scalar00:01:00
-
Dividing by a scalar00:01:00
-
Raise to a power00:01:00
-
Transpose00:01:00
-
Element-wise addition00:02:00
-
Element-wise subtraction00:01:00
-
Element-wise multiplication00:01:00
-
Element-wise division00:01:00
-
Matrix multiplication00:02:00
-
Statistics00:03:00
-
What is a Python Pandas DataFrame?00:01:00
-
What is a Python Pandas Series?00:01:00
-
DataFrame vs Series00:01:00
-
Creating a DataFrame using lists00:03:00
-
Creating a DataFrame using a dictionary00:01:00
-
Loading CSV data into python00:02:00
-
Changing the Index Column00:01:00
-
Inplace00:01:00
-
Examining the DataFrame: Head & Tail00:01:00
-
Statistical summary of the DataFrame00:01:00
-
Slicing rows using bracket operators00:01:00
-
Indexing columns using bracket operators00:01:00
-
Boolean list00:01:00
-
Filtering Rows00:01:00
-
Filtering rows using AND OR operators00:02:00
-
Filtering data using loc()00:04:00
-
Filtering data using iloc()00:02:00
-
Adding and deleting rows and columns00:03:00
-
Sorting Values00:02:00
-
Exporting and saving pandas DataFrames00:02:00
-
Concatenating DataFrames00:01:00
-
groupby()00:03:00
-
Introduction to Data Cleaning00:01:00
-
Quality of Data00:01:00
-
Examples of Anomalies00:01:00
-
Quality of Data00:01:00
-
Examples of Anomalies00:01:00
-
Median-based Anomaly Detection00:03:00
-
Mean-based anomaly detection00:03:00
-
Z-score-based Anomaly Detection00:03:00
-
Interquartile Range for Anomaly Detection00:05:00
-
Dealing with missing values00:06:00
-
Regular Expressions00:07:00
-
Feature Scaling00:01:00
-
Introduction (Exploratory Data Analysis in Python)00:01:00
-
What is Exploratory Data Analysis?00:01:00
-
Univariate Analysis00:02:00
-
Univariate Analysis: Continuous Data00:06:00
-
Univariate Analysis: Categorical Data00:02:00
-
Bivariate analysis: Continuous & Continuous00:05:00
-
Bivariate analysis: Categorical & Categorical00:03:00
-
Bivariate analysis: Continuous & Categorical00:02:00
-
Detecting Outliers00:06:00
-
Categorical Variable Transformation00:04:00
-
Introduction to Time Series00:02:00
-
Getting stock data using yfinance00:03:00
-
Converting a Dataset into Time Series00:04:00
-
Working with Time Series00:04:00
-
Visualising a Time Series00:03:00
-
Data Visualisation using python00:01:00
-
Setting Up Matplotlib00:01:00
-
Plotting Line Plots using Matplotlib00:02:00
-
Title, Labels & Legend00:07:00
-
Plotting Histograms00:01:00
-
Plotting Bar Charts00:02:00
-
Plotting Pie Charts00:03:00
-
Plotting Scatter Plots00:06:00
-
Plotting Log Plots00:01:00
-
Plotting Polar Plots00:02:00
-
Handling Dates00:01:00
-
Creating multiple subplots in one figure00:03:00
-
What is Machine Learning?00:02:00
-
Applications of machine learning00:02:00
-
Machine Learning Methods00:01:00
-
What is Supervised learning?00:01:00
-
What is Unsupervised learning?00:01:00
-
Supervised learning vs Unsupervised learning00:04:00
-
Introduction to regression00:02:00
-
How Does Linear Regression Work?00:02:00
-
Line representation00:01:00
-
Implementation in python: Importing libraries & datasets00:02:00
-
Implementation in python: Distribution of the data00:02:00
-
Implementation in python: Creating a linear regression object00:03:00
-
Understanding Multiple linear regression00:02:00
-
Exploring the dataset00:04:00
-
Encoding Categorical Data00:05:00
-
Splitting data into Train and Test Sets00:01:00
-
Training the model on the Training set00:01:00
-
Predicting the Test Set results00:03:00
-
Evaluating the performance of the regression model00:01:00
-
Root Mean Squared Error in Python00:03:00
-
Introduction to classification00:01:00
-
K-Nearest Neighbours algorithm00:01:00
-
Example of KNN00:01:00
-
K-Nearest Neighbours (KNN) using python00:01:00
-
Importing required libraries00:01:00
-
Importing the dataset00:03:00
-
Splitting data into Train and Test Sets00:01:00
-
Feature Scaling00:01:00
-
Importing the KNN classifier00:02:00
-
Results prediction & Confusion matrix00:02:00
-
Introduction to decision trees00:01:00
-
What is Entropy?00:01:00
-
Exploring the dataset00:01:00
-
Decision tree structure00:01:00
-
Importing libraries & datasets00:03:00
-
Encoding Categorical Data00:03:00
-
Splitting data into Train and Test Sets00:01:00
-
Results Prediction & Accuracy00:03:00
-
Introduction (Classification Algorithms: Logistic regression)00:01:00
-
Implementation steps00:01:00
-
Importing libraries & datasets00:03:00
-
Splitting data into Train and Test Sets00:03:00
-
Pre-processing00:02:00
-
Training the model00:01:00
-
Results prediction & Confusion matrix00:02:00
-
Logistic Regression vs Linear Regression00:02:00
-
Introduction to clustering00:01:00
-
Use cases00:01:00
-
K-Means Clustering Algorithm00:01:00
-
Elbow method00:02:00
-
Steps of the Elbow method00:01:00
-
Implementation in python00:04:00
-
Hierarchical clustering00:01:00
-
Density-based clustering00:02:00
-
Implementation of k-means clustering in python00:01:00
-
Implementation of k-means clustering in python00:01:00
-
Visualising the dataset00:02:00
-
Defining the classifier00:02:00
-
3D Visualisation of the clusters00:03:00
-
3D Visualisation of the predicted values00:03:00
-
Number of predicted clusters00:02:00
-
Introduction (Recommender System)00:01:00
-
Collaborative Filtering in Recommender Systems00:09:00
-
Content-based Recommender System00:01:00
-
Importing libraries & datasets00:03:00
-
Merging datasets into one dataframe00:01:00
-
Sorting by title and rating00:04:00
-
Histogram showing number of ratings00:01:00
-
Frequency distribution00:01:00
-
Jointplot of the ratings and number of ratings00:01:00
-
Data pre-processing00:02:00
-
Sorting the most-rated movies00:01:00
-
Grabbing the ratings for two movies00:01:00
-
Correlation between the most-rated movies00:02:00
-
Sorting the data by correlation00:01:00
-
Filtering out movies00:01:00
-
Sorting values00:01:00
-
Repeating the process for another movie00:02:00
-
Conclusion00:01:00