About This Course
Course Curriculum
-
Introduction
00:07:00 -
Building a Data-driven Organization – Introduction
00:04:00 -
Data Engineering
00:06:00 -
Learning Environment & Course Material
00:04:00 -
Movielens Dataset
00:03:00
-
Introduction to Relational Databases
00:09:00 -
SQL
00:05:00 -
Movielens Relational Model
00:15:00 -
Movielens Relational Model: Normalization vs Denormalization
00:16:00 -
MySQL
00:05:00 -
Movielens in MySQL: Database import
00:06:00 -
OLTP in RDBMS: CRUD Applications
00:17:00 -
Indexes
00:16:00 -
Data Warehousing
00:15:00 -
Analytical Processing
00:17:00 -
Transaction Logs
00:06:00 -
Relational Databases – Wrap Up
00:03:00
-
Distributed Databases
00:07:00 -
CAP Theorem
00:10:00 -
BASE
00:07:00 -
Other Classifications
00:07:00
-
Introduction to KV Stores
00:02:00 -
Redis
00:04:00 -
Install Redis
00:07:00 -
Time Complexity of Algorithm
00:05:00 -
Data Structures in Redis : Key & String
00:20:00 -
Data Structures in Redis II : Hash & List
00:18:00 -
Data structures in Redis III : Set & Sorted Set
00:21:00 -
Data structures in Redis IV : Geo & HyperLogLog
00:11:00 -
Data structures in Redis V : Pubsub & Transaction
00:08:00 -
Modelling Movielens in Redis
00:11:00 -
Redis Example in Application
00:29:00 -
KV Stores: Wrap Up
00:02:00
-
Introduction to Document-Oriented Databases
00:05:00 -
MongoDB
00:04:00 -
MongoDB Installation
00:02:00 -
Movielens in MongoDB
00:13:00 -
Movielens in MongoDB: Normalization vs Denormalization
00:11:00 -
Movielens in MongoDB: Implementation
00:10:00 -
CRUD Operations in MongoDB
00:13:00 -
Indexes
00:16:00 -
MongoDB Aggregation Query – MapReduce function
00:09:00 -
MongoDB Aggregation Query – Aggregation Framework
00:16:00 -
Demo: MySQL vs MongoDB. Modeling with Spark
00:02:00 -
Document Stores: Wrap Up
00:03:00
-
Introduction to Search Engine Stores
00:05:00 -
Elasticsearch
00:09:00 -
Basic Terms Concepts and Description
00:13:00 -
Movielens in Elastisearch
00:12:00 -
CRUD in Elasticsearch
00:15:00 -
Search Queries in Elasticsearch
00:23:00 -
Aggregation Queries in Elasticsearch
00:23:00 -
The Elastic Stack (ELK)
00:12:00 -
Use case: UFO Sighting in ElasticSearch
00:29:00 -
Search Engines: Wrap Up
00:04:00
-
Introduction to Columnar databases
00:06:00 -
HBase
00:07:00 -
HBase Architecture
00:09:00 -
HBase Installation
00:09:00 -
Apache Zookeeper
00:06:00 -
Movielens Data in HBase
00:17:00 -
Performing CRUD in HBase
00:24:00 -
SQL on HBase – Apache Phoenix
00:14:00 -
SQL on HBase – Apache Phoenix – Movielens
00:10:00 -
Demo : GeoLife GPS Trajectories
00:02:00 -
Wide Column Store: Wrap Up
00:04:00
-
Introduction to Time Series
00:09:00 -
InfluxDB
00:03:00 -
InfluxDB Installation
00:07:00 -
InfluxDB Data Model
00:07:00 -
Data manipulation in InfluxDB
00:17:00 -
TICK Stack I
00:12:00 -
TICK Stack II
00:23:00 -
Time Series Databases: Wrap Up
00:04:00
-
Introduction to Graph Databases
00:05:00 -
Modelling in Graph
00:14:00 -
Modelling Movielens as a Graph
00:10:00 -
Neo4J
00:04:00 -
Neo4J installation
00:08:00 -
Cypher
00:12:00 -
Cypher II
00:19:00 -
Movielens in Neo4J: Data Import
00:17:00 -
Movielens in Neo4J: Spring Application
00:12:00 -
Data Analysis in Graph Databases
00:05:00 -
Examples of Graph Algorithms in Neo4J
00:18:00 -
Graph Databases: Wrap Up
00:07:00
-
Introduction to Big Data With Apache Hadoop
00:06:00 -
Big Data Storage in Hadoop (HDFS)
00:16:00 -
Big Data Processing : YARN
00:11:00 -
Installation
00:13:00 -
Data Processing in Hadoop (MapReduce)
00:14:00 -
Examples in MapReduce
00:25:00 -
Data Processing in Hadoop (Pig)
00:12:00 -
Examples in Pig
00:21:00 -
Data Processing in Hadoop (Spark)
00:23:00 -
Examples in Spark
00:23:00 -
Data Analytics with Apache Spark
00:09:00 -
Data Compression
00:06:00 -
Data serialization and storage formats
00:20:00 -
Hadoop: Wrap Up
00:07:00
-
Introduction Big Data SQL Engines
00:03:00 -
Apache Hive
00:10:00 -
Apache Hive : Demonstration
00:20:00 -
MPP SQL-on-Hadoop: Introduction
00:03:00 -
Impala
00:06:00 -
Impala : Demonstration
00:18:00 -
PrestoDB
00:13:00 -
PrestoDB : Demonstration
00:14:00 -
SQL-on-Hadoop: Wrap Up
00:02:00
-
Data Architectures
00:05:00 -
Introduction to Distributed Commit Logs
00:07:00 -
Apache Kafka
00:03:00 -
Confluent Platform Installation
00:10:00 -
Data Modeling in Kafka I
00:13:00 -
Data Modeling in Kafka II
00:15:00 -
Data Generation for Testing
00:09:00 -
Use case: Toll fee Collection
00:04:00 -
Stream processing
00:11:00 -
Stream Processing II with Stream + Connect APIs
00:19:00 -
Example: Kafka Streams
00:15:00 -
KSQL : Streaming Processing in SQL
00:04:00 -
KSQL: Example
00:14:00 -
Demonstration: NYC Taxi and Fares
00:01:00 -
Streaming: Wrap Up
00:02:00
-
Database Polyglot
00:04:00 -
Extending your knowledge
00:08:00 -
Data Visualization
00:11:00 -
Building a Data-driven Organization – Conclusion
00:07:00 -
Conclusion
00:03:00